# Infrared Intensities as a Quantitative Measure of Intramolecular Interactions. Part XXVIII. ${ }^{1}$ Benzenethiols and Methyl and t-Butyl Phenyl Sulphides 

By Nigel C. Cutress, T. Bruce Grindley, and Alan R. Katritzky,* School of Chemical Sciences, University of East Anglia, Norwich NOR 88C<br>Ronald D. Topsom,* Department of Organic Chemistry, La Trobe University, Bundoora, Victoria 3083, Australia

l.r. intensities of series of meta-substituted benzenethiols and methyl phenyl and phenyl t-butyl sulphides confirm the following order of resonance donation: $\mathrm{SMe}>\mathrm{SH} \gg \mathrm{SBu}^{\mathrm{t}}$. The intensities of the para-substituted benzenethiols and phenyl sulphides are interpreted in terms of sulphur $d$-orbital acceptance when the divalent sulphur opposes a donor substituent. A scale of $d$-orbital-acceptor ability is given for a range of substituents.

For a number of years there has been controversy as to the importance of $d$-orbital participation in the bonding of sulphides attached to $\pi$-bonded systems. The frequencies of bands in u.v. spectra of alkyl aryl sulphides have been quoted as evidence for $d$-orbital participation, ${ }^{2}$ as evidence against ${ }^{3}$ for simple sulphides or as contradictory when strong donors are present, ${ }^{3}$ and as inconclusive. ${ }^{4,5}$ Acidity values ( $\mathrm{p} K_{\mathrm{a}}$ ) of substituted phenols and benzenethiols have also been quoted as evidence against ${ }^{6}$ or for ${ }^{7} d$-orbital participation or as inconclusive. ${ }^{8}$ The application of Goodman's substituent interference experiment ${ }^{9}$ to the intensities of the ( $A^{\prime}-{ }^{\prime} L_{\mathrm{b}}$ ) bands of benzenethiols has been used in turn as evidence for ${ }^{10}$ and against ${ }^{11} d$-orbital bonding in these molecules. Photoelectron spectroscopy has suggested that the effect of $d$-orbital bonding in benzenethiol

[^0]and some related compounds on the $\pi$-orbitals of the benzene ring is small. ${ }^{12}$ The discrepancies between the additive dipole moments and the observed ones for para- $N N$-dimethylaminophenyl methyl sulphide and the corresponding methyl ether are 0.58 and 0.05 D , respectively. ${ }^{12}$ This is good evidence that, at least where strong donors are para to the sulphide group, ${ }^{13,14}$ $d$-orbital acceptance is important. Kinetics of $\mathrm{H}-\mathrm{D}$ exchange in aromatic sulphides also provide evidence ${ }^{\mathbf{1 5}}$ for $(p-d) \pi$ bonding.

Steric Considerations.-It is experimentally observed that in sterically twisted anisoles there is less conjugation. ${ }^{16,17}$ This is because, when one of the lone pair orbitals of oxygen is removed from conjugation, it is
${ }^{10}$ L. Goodman and R. W. Taft, J. Amer. Chem. Soc., 1965, 87, 4385.
${ }^{11}$ G. di Lonardo and C. Zauli, J. Chem. Soc. (A), 1969, 1305.
12 D. C. Frost, F. G. Herring, A. Katrib, C. A. McDowell, and R. A. N. McLean, J. Phys. Chem., 1972, r6, 1030; H. Bock, G. Wagner and J. Kroner, Tetrahedron Letters, 1971, 3713.
${ }_{13}$ V. Baliah and M. Uma, Tetrahedron, 1963, 19, 455.
${ }^{14}$ H. Lumbroso and R. Passerini, Bull. Soc. chim. France, 1955, 1179.
${ }_{15}$ A. I. Shatenshtein and H. A. Gvozdeva, Tetrahedron, 1969, 25, 2749.
${ }^{16}$ See the section on durenes in R. T. C. Brownlee, R. E. J. Hutchinson, A. R. Katritzky, T. T. Tidwell, and R. D. Topsom, J. Amer. Chem. Soc., 1968, 90, 1757.
${ }^{17}$ A. R. Katritzky, R. F. Pinzelii, and R. D. Topsom, Tetrahedron, 1972, 28, 3441.
not replaced by the other to the same extent, since the $\sigma$ framework hybridization causes considerable angular deformation of the in-plane $p$-orbital. However, when $d$-orbitals are involved, as in thioanisole, one orbital of the appropriate symmetry replaces another in a bonding position as the group is rotated. Hence consideration of steric effects is a potential method of observing
intensities and frequencies ${ }^{3,4}$ and i.r. intensities ${ }^{17}$ of the series of compounds PhSR , where $\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Pr}^{\mathrm{i}}$, or $\mathrm{Bu}^{\mathrm{t}}$, and of the $\mathrm{p} K_{\mathrm{a}}$ values of similarly para-substituted benzoic acids, ${ }^{19}$ all of which change uniformly, indicate clearly that $(p-p) \pi$ overlap has diminished but do not provide positive evidence for $(p-d) \pi$ resonance interactions.

Table 1
Physical and spectral properties of benzenethiols and methyl and t-butyl sulphides substituted in the meta-position

${ }^{a}$ Peak extinction coefficient, $\varepsilon_{\mathrm{A}}=a_{\text {max }} . / c l$, where $a_{\text {max. }}$ is the absorbance at peak maximum, $c$ is concentration in mol $1^{-1}$, and $l$ is cell path length in $\mathrm{cm} . \quad{ }^{b}$ The integrated intensity of the $1600-1585 \mathrm{~cm}^{-1}$ band, in $1 \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$. ${ }^{c} f_{m}=\left[\sigma_{\mathrm{R}}(1)\right]^{2}+\left[\sigma_{\mathrm{R}}(2)\right]^{2} \frac{1}{1}$ $\sigma_{R}^{\circ}(1) \sigma_{R}^{\circ}(2) . \quad a$ From Kodak Limited. ${ }^{e}$ G. Daccomo, ' Jahres Bericht uber die Fortshcritte der Chemie,' 1891, 1375. fr. W. Taft, E. Price, I. R. Fox, I. C. Lewis, K. K. Andersen, and G. T. Davis, J. Amer. Chem. Soc., 1963, 85, 709. $g$ D. S. Tarbell and A. H. Herz, J. Amer. Chem. Soc., 1953, 75, 1668. ${ }^{n}$ G. Modena and L. Maioli, Gazzetta, 1957, 8\%, 1306. ${ }^{j}$ G. Leandri, A. Mangini, and R. Passerini, Gazzetta, 1954, 84, 3. ${ }^{k}$ F. G. Bordwell and P. J. Boutan, J. Amer. Chem. Soc., 1957, 79, 717. ${ }^{l}$ M. T. Zincke and J. Muller, Ber., 1913, 46, 775.
$\dagger$ Corrected for asymmetry. $\ddagger$ New compound.
$d$-orbital effects. Phenyl methyl sulphides have been shown to be near planar. ${ }^{18}$ The effect has been previously observed in comparison ${ }^{10}$ of the ${ }^{19} \mathrm{~F}$ n.m.r. spectra of 2,6-dimethyl-4-fluorothioanisole and 1,3-di-methyl-5-fluorobenzene; in the former the twisted methylthio-group behaves as a weak acceptor. ${ }^{4}$ Similar conclusions have been drawn from dipole moment studies of sterically hindered aryl methyl sulphides. ${ }^{13}$ The $\mathrm{p} K_{\mathrm{a}}$ values of phenols with sterically hindered para-methylthio-substituents have been quoted as evidence for $d$-orbital participation. ${ }^{4}$ Consideration of u.v.
${ }^{18}$ M. J. Aroney, R. J. W. Le Fèvre, R. K. Pierens, and M. G. N. The, J. Chem. Soc. (B), 1971, 1132.
${ }_{19}$ N. H. P. Smith, Nature, 1966, 211, 186; N. H. P. Smith, personal communication of the $\mathrm{p} K_{\mathrm{a}}$ of $p$ t-t-butylthiobenzoic acid; V. Baliah, Sp. Shanmuganathan, and R. Varadachari, J. Phys. Chem., 1957, 61, 1013.

It has been previously demonstrated ${ }^{20}$ that the i.r. intensities of $v_{8}$ bands ( $\nu_{16}$ in Herzberg's notation) of benzenes may be related both to the overall resonance effect of a group and to its ability to accept electrons into its $d$-orbitals. A re-analysis ${ }^{21}$ has established equation (1) for para-disubstituted benzenes, where $\lambda$ is a

$$
\begin{equation*}
A=15,000\left[\sigma^{\circ}{ }_{R}(1)-\sigma_{R}^{\circ}(2)+\lambda\right]+170 \tag{1}
\end{equation*}
$$

measure of the electronic interaction additional to that based on additivity of substituent effects.

We have studied the i.r. intensities of the $v_{s}$ bands of substituted benzenethiols, methyl phenyl sulphides, and

[^1]t-butyl phenyl sulphides. We also reconsider results for other substituents in order to provide a relative order of $d$-orbital acceptor abilities. We had earlier ${ }^{22}$ used an equation of type (1) but with a value of 11,800 instead of 15,000 ; we therefore also show, as in a preceding paper, ${ }^{21}$ that our previous conclusions are still valid.

## EXPERIMENTAL

With the exception of certain phenyl t-butyl sulphides, the compounds were commercial samples or were prepared
$(3 \times 25 \mathrm{ml})$. The combined extracts were washed with dilute aqueous sodium hydroxide ( 2 g in 30 ml ) and water $(25 \mathrm{ml})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The product was distilled to give $t$-butyl m -tolyl sulphide ( $0.4 \mathrm{~g}, 20 \%$ ), as an oil, b.p. $72.5^{\circ}$ at 2.3 mmHg (Found: C, $73 \cdot 2 ; \mathrm{H}, 8.9$. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~S}$ requires $\mathrm{C}, 73 \cdot 2 ; \mathrm{H}, 8 \cdot 9 \%$ ). The following were prepared similarly: m-chlorophenyl t-butyl sulphide, oil, b.p. $57-59^{\circ}$ at 0.05 mmHg (Found: C, $60.0 ; \mathrm{H}, 6.9 ; \mathrm{Cl}$, 17.7. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClS}$ requires $\left.\mathrm{C}, 59.9 ; \mathrm{H}, 6.6 ; \mathrm{Cl}, 17.7 \%\right)$; m -fuorophenyl t-butyl sulphide, oil, b.p. $50^{\circ}$ at 0.9 mmHg (Found: C, 64.9; H, 7.2. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FS}$ requires $\mathrm{C}, 65 \cdot 2 ; \mathrm{H}$,

Table 2
Physical and spectral properties of benzenethiols and methyl and t -butyl sulphides substituted in the para-position

| Substituents |  | M.p. [B.p.] $\left({ }^{\circ} \mathrm{C}\right)$ | Lit. m.p. [b.p.] ( ${ }^{\text {C }}$ ) | $\begin{gathered} 1600-1585 \\ \mathrm{~cm}^{-1} \text { band } \end{gathered}$ |  |  | $A^{5}\left(\frac{A-170}{15,000}\right)^{\frac{1}{3}}$ |  | $\lambda^{\text {c }}$ | $f_{p}{ }^{d}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 |  |  | $\sigma^{\circ}{ }_{R}(2)$ | $\sim_{v}$ | $\varepsilon_{\mathrm{A}}{ }^{\text {a }}$ |  |  |  |  |
| SH | Me | [48 at $0 \cdot 1 \mathrm{mmHg}$ ] | [195] ${ }^{\text {e }}$ | $-0 \cdot 10$ | 1599 | 3 | 185 | 0.03 | $0 \cdot 03$ | $0 \cdot 06$ |
|  | Cl | 52-53 | $53{ }^{f}$ | $-0.22$ | 1573 | 1 | 210 | 0.05 | $0 \cdot 04$ § | $0 \cdot 08$ |
|  | F | [29-30 at $2 \cdot 3 \mathrm{mmHg}]$ | [64-65 at 12 mmHg ]。 | $-0.34$ | 1591 | 115 | 1140 | 0.25 | 0.12 | 0.27 |
|  | OMe | [57-59 at 0.7 mmHg ] | [227-229] ${ }^{h}$ | $-0.43$ | 1593 | 120 | 2370 | $0 \cdot 38$ | $0 \cdot 15$ | $0 \cdot 39$ |
|  |  |  |  |  | 1573 | 56 |  |  |  |  |
| SMe | Me | [72 at 3.8 mmHg ] | [104-105 at 20 mmHg$]^{j}$ | $-0 \cdot 10$ | 1604 | 10 | 295 | $0.08 \ddagger$ | 0.05 | $0 \cdot 10$ |
|  | Cl | [44 at 0.08 mmHg ] | [112 at 18 mmHg$]^{k}$ | $-0.22$ | 1576 | 3 | 290 | $0 \cdot 06$ | $0 \cdot 06 §$ | 0.04 |
|  | SMe | [83-84.5] | [85] ${ }^{\text {b }}$ | $-0.25$ | 1578 | 10 | 305 | $0 \cdot 00$ |  | 0.00 |
|  | F | [65 at 7.7 mmHg ] | [74 at 10 mmHg$]^{m}$ | -0.34 | 1589 | 60 | 1120 | $0 \cdot 24{ }_{+}^{+}$ | $0 \cdot 18$ | $0 \cdot 27$ |
|  | OMe | [ $48-49$ at 0.07 mmHg ] |  | $-0.43$ | 1594 | 87 | 2755 | $0 \cdot 40 \pm$ | $0 \cdot 22$ | $0 \cdot 40$ |
|  |  | 25-26 | 25-26 ${ }^{n}$ |  | 1571 | 58 |  |  |  |  |
|  | $\mathrm{NMe}_{2}$ | [112-114 at 3 mmHg ] | [159-160 at 20 mmHg$]^{\circ}$ | $-0 \cdot 53$ | 1596 | 240 | 5120 |  | $0 \cdot 28$ | 0.57 |
|  | $\mathrm{NO}_{2}$ | 68-69 | 70.5-71.5 ${ }^{p}$ | $+0 \cdot 17$ | 1595 | 190 | 6400 | $0 \cdot 64$ |  |  |
|  |  |  |  |  | 1583 | 295 |  |  |  |  |
|  | COMe | 81-82 | $79-80^{g}$ | +0.22 | 1591 | 470 | 4815 | $0.56 \ddagger$ | 0.09 | $0 \cdot 58$ |
|  | $\mathrm{SO}_{2} \mathrm{Me}$ | 98-99 | 98-99 ${ }^{\text {r }}$ | $+0.07$ | 1581 | 185 | 3005 | $0 \cdot 43{ }_{\dagger}^{+}$ | $0 \cdot 12$ | $0 \cdot 43$ |
| SBut | Me | [59 at 0.6 mmHg ] | [142 at 50 mmHg$]^{\text {s }}$ | $-0.10$ | 1596 | 15 | 295 | $0 \cdot 09{ }^{+}$ | $0 \cdot 04$ | $0 \cdot 07$ |
|  | Cl | [92 at $1 \cdot 1 \mathrm{mmHg}$ ] | [75 at 0.6 mmHg ] | -0.22 | 1571 | 47 | 670 | $0 \cdot 18$ | $0 \cdot 07 \S$ | $0 \cdot 23$ |
|  | F | [64-66 at $3 \cdot 1 \mathrm{mmHg}$ ] |  | $-0.34$ | 1588 | 180 | 2630 | $0 \cdot 41$ | $0 \cdot 14$ | $0 \cdot 41$ |
|  | Onie | ( $77-79$ at 0.3 mmHg ] | [86 at 0.6 mmHg$]^{\text {t }}$ | $-0.43$ | 1590 | 230 | 4260 | $0 \cdot 52$ | $0 \cdot 17$ | 0.53 |
|  |  |  |  |  | 1569 | 70 |  |  |  |  |
|  | $\mathrm{NO}_{2}$ | [86-88 at $1 \cdot 15 \mathrm{mmHg}$ ] |  | $0 \cdot 17$ | 1597 | 180 | 2270 | $0 \cdot 37$ |  |  |
|  |  | $37$ | $39{ }^{\text {t }}$ |  | 1576 | 77 |  |  |  |  |

${ }^{a}$ Peak extinction coefficient; $\varepsilon_{\mathrm{A}}=a_{\text {max. }} / c l$, where $a_{\text {max. }}$. is absorbance at peak maximum, $c$ is concentration in mol $1^{-1}, l$ is cell path length in cm . ${ }^{b}$ The integrated intensity of the $1600-1585 \mathrm{~cm}^{-1}$ band in $1 \mathrm{~mol}^{-1} \mathrm{~cm}^{-2} .{ }^{c} \lambda_{\lambda}=K_{\mathrm{x}} \sigma_{\mathrm{R}}{ }^{\circ} D$ where SR is para to a donor; $\lambda=K_{A}\left(\sigma^{+}-\sigma\right)$ where SR is para to an acceptor (see ref. 21). ${ }^{\boldsymbol{a}} f_{p}=\left[\sigma^{\circ}{ }_{\mathbf{R}}(1)-\sigma_{\mathrm{R}}(2)+\lambda\right]$. e E. Bourgeois, Rec. Trav. chim., 1899, 18, 426. ${ }^{f}$ H. J. Backer and N. D. Dijkstra, Rec. Trav.chim., 1933, 52, 701. ${ }^{g}$ G. Olah and A. Pavlath, Acta Chim. Acad. Sci. Hung., 1954, 4, 111. ${ }^{h}$ F. Taboury, Ann. Chim. (France), 1908, 15, 21. ${ }^{j}$ H. Gilman and N. J. Beaber, J. Amer. Chem. Soc., I925, ${ }_{m}{ }^{17}, 1449 .{ }^{k}$ H. Lumbroso and G. Dumas, Bull. Soc. chim. France, 1955, 651. ${ }^{l}$ T. Zincke and W. Frohneberg, Ber., 1909, 42, 2721. ${ }^{m}$ H. Zahn and H. Zuber, Chem. Ber., 1953, 86, 172. ${ }^{n}$ F. G. Bordwell and P. G. Boutan, J. Amer. Chem. Soc., 1957, '79. 717. ${ }^{\circ}$ Ref. 23. ${ }^{p}$ B. J. Lindberg and B. Schroder, Acta Chem. Scand., 1970, 24, 3089. ${ }^{q}$ L. C. King, M. McWhirter, and R. L. Rowland, J. Amer. Chem. Soc., 1948, 70, 239. ${ }^{r}$ H. Burton and P. F. Hu, J. Chem. Soc., 1948, 604. s W. Hahn, G.P. 1,110,631/1961 (Chem. Abs., 1962, 56, 3416e). ${ }^{t}$ G. Maccagnani and F. Taddei, Boll. sci. Fac. Chim. ind. Bologna, 1965, 23, 381 (Chem. Abs., 1966, 64, 17395).
$\dagger$ New compound. $\ddagger$ Corrected for asymmetry. § Also corrected for $d$-orbital interaction with Cl .
by literature methods. Their physical and spectral properties are described in Tables 1 and 2. Their purities were checked by g.l.c., by m.p. determination, and by standard spectroscopic methods. Benzene was dried with sodium wire. Spectroscopic grade carbon tetrachloride was stored over molecular sieves.

The new phenyl t-butyl sulphides were prepared by a standard method, illustrated for t -butyl $m$-tolyl sulphide.
$t$-Butyl m-Tolyl Sulphide.-t-Butyl alcohol ( $2 \cdot 4 \mathrm{~g}$ ) was slowly added to stirred concentrated sulphuric acid ( 20 ml ; $15 \%$ ) at $0-5^{\circ}$, and the mixture was stirred for 30 min . Toluene- $m$-thiol ( 1.5 g ) was slowly added dropwise over 15 min , and the mixture was maintained between 0 and $5^{\circ}$ for 1 h , and then at room temperature for 3 h . It was then poured onto crushed ice ( 50 g ) and extracted with ether
${ }_{22}$ P. J. Q. English, A. R. Katritzky, T. T. Tidwell, and R. D. Topsom, J. Amer. Chem. Soc., 1968, 90, 1767.
$7 \cdot 1 \%$ ); m-methoxyphenyl t-butyl sulphide (the reaction mixture was kept at $0-5^{\circ}$ for 3 h and then worked up), oil, b.p. $68^{\circ}$ at 0.12 mmHg (Found: C, $67.3 ; \mathrm{H}, 8.3 . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{OS}$ requires $\mathrm{C}, 67.3 ; \mathrm{H}, 8.2 \%$ ); and p -fluorophenyl t-butyl sulphide, oil, b.p. $64-66^{\circ}$ at 3.1 mmHg (Found: C, $65 \cdot 6 ; \mathrm{H}$, 7.1. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FS}$ requires $\mathrm{C}, 65 \cdot 2 ; \mathrm{H}, 7 \cdot 1 \%$ ).
p-NN-Dimethylaminophenyl Methyl Sulphide.-A literature method ${ }^{23}$ gave the title compound, b.p. 112-114 at 3 mmHg (lit., ${ }^{23} 159-160^{\circ}$ at 20 mmHg ) (Found: C, $64.5 ; \mathrm{H}$, $8.0 ; \mathrm{N}, 8 \cdot 6$. Calc. for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NS}: \mathrm{C}, 64 \cdot 6 ; \mathrm{H}, 7 \cdot 8 ; \mathrm{N}, 8 \cdot 4 \%$ ).

The intensities of the i.r. vibrations were measured as described previously ${ }^{24}$ on dilute solutions of compounds in carbon tetrachloride containing $10 \%$ benzene. Reproducibilities in $(A-340)^{\frac{1}{2}}$ or $(A-170)^{\frac{1}{2}}$ values are $\pm 1$ intensity
${ }_{23}$ H. Gilman and F. J. Webb, J. Amer. Chem. Soc., 1949, 71, 4062.
${ }_{24}$ R. T. C. Brownlee, A. R. Katritzky, and R. D. Topsom, J. Amer. Chem. Soc., 1966, 88, 1413.
units for compounds where $A$ is greater than $4001 \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ but greater for lower values; in such cases the actual value is also less accurate because of uncertainty in the value of the overtone correction.

RESULTS AND DISCUSSION
Asymmetry.-Compounds of type (I) have intensities made up of contributions in both $x$ and $y$ directions. ${ }^{22}$
$\xrightarrow{x}+y$


(I)

For the compounds at present considered $\mathrm{B}=\mathrm{H}, \mathrm{Me}$, or $\mathrm{Bu}^{\mathrm{t}}$. Thiols have not been corrected for asymmetry. The $\sigma^{\circ}{ }_{\mathrm{R}}$ value for $\mathrm{SBu}^{\mathrm{t}}(0 \cdot 07)$ is too small for the asymmetric contribution to be significant; in addition $\mathrm{SBu}^{\mathrm{t}}$ is twisted into a non-planar conformation ${ }^{\mathbf{1 7}}$ which will decrease $\sigma^{\circ}{ }_{\mathbf{R}} y$. The $\sigma^{\circ}{ }_{\mathrm{R}} x$ and $\sigma^{\circ}{ }_{\mathrm{R}} y$ values for SMe have been calculated as previously ${ }^{22}$ from the intensity of $p$-bis(methylthio)benzene to be $\pm 0.24$ and $\pm 0.07$, respectively ( $c f$. $\pm 0.42$ and $\pm 0 \cdot 06$ for ${ }^{21} \mathrm{OMe}$ ). Corrections for the intensities of meta- and para-substituted methyl phenyl sulphides have been applied ${ }^{22,25}$ as necessary.


Figure 1 Plot of $[(A-340) / 19,000]$ against $\left\{\left[\sigma^{\circ}{ }_{R}(1)\right]+\right.$ $\left.\left[\sigma^{\circ}{ }_{R}(2)\right]^{2}+\sigma_{R}^{\circ}(1) \sigma_{R}^{\circ}(2)\right\}$ for meta-substituted benzenethiols and alkyl phenyl sulphiddes
meta-Disubstituted Benzenes.-Table 1 contains the spectral data for the meta-substituted alkyl phenyl sulphides and benzenethiols. Equation (2) has been
developed previously ${ }^{25}$ to relate the combined intensity of 1600 and $1585 \mathrm{~cm}^{-1}$ bands of meta-disubstituted benzenes to $\sigma^{\circ}{ }_{\boldsymbol{R}}$ terms. Application of this equation to the meta-substituted sulphur compounds with an

$$
A=19,000\left\{\left[\sigma^{\circ}{ }_{\mathrm{R}}(1)\right]^{2}+\left[{\left.\sigma_{\mathrm{R}}(2)\right]^{2}}_{\left.\sigma_{\mathrm{R}}^{\circ}(1) \sigma_{\mathrm{R}}(2)\right\}}+340\right.\right.
$$

asymmetry correction ${ }^{25}$ in the case of methyl phenyl sulphides using the previously determined $\sigma^{\circ}{ }_{\mathrm{R}}$ values


Figure 2 Plot of $[(A-170) / 15,000]$ against $\quad\left[\sigma_{\mathbf{R}}(1)-\right.$
$\left.\sigma_{R}^{\circ}(2)\right]$ for para-substituted benzenethiols and alkyl phenyl $\left.\sigma_{\mathrm{R}}^{\circ}(2)\right]$ for para-substituted benzencthiols and alkyl phenyl
sulphides
( $\mathrm{SH},-0.19 ;{ }^{16} \mathrm{SMe},-0.25 ;{ }^{16} \mathrm{SBu}^{\mathrm{t}},-0.07{ }^{17}$ ) gave a good straight line (Figure 1), thus confirming the values adopted.
para-Disubstituted Benzenes.-Table 2 contains the spectral data for the para-substituted alkyl phenyl sulphides and benzenethiols. The intensities of the chloro- ( 290 ; lit., ${ }^{22}<50$ ) and fluoro-(methylthio)benzenes (1120; lit., ${ }^{22} 895$ ) differ from previous values because in the present study the intensity of an overtone at $1640 \mathrm{~cm}^{-1}$ was included in the integration. The intensity of para-dimethylamino(methylthio)benzene also differs considerably ( 5120 ; lit., ${ }^{22} 3107$ ). Since the present compound gave good analytical figures and was homogeneous by g.l.c., we conclude that there was an error in the previous calculation or that the previous sample was impure.
Equation (1) ${ }^{\mathbf{2 1}}$ describes the intensities of paradisubstituted benzenes; $\lambda=0$ where there is no inter-

25 A. R. Katritzky, M. V. Sinnott, T. T. Tidwell, and R. D. Topsom, J. Amer. Chem. Soc., 1969, 91, 628.
action between substituents. Figure 2 shows a plot of $[(A)-170) / 15,000]^{\frac{1}{2}}$ against $\left[\sigma^{\circ}{ }_{R}(1)-\sigma^{\circ}{ }_{\mathrm{R}}(2)\right]$ and the line drawn assumes a linear relationship of unit slope. There are significant deviations from this line for the derivatives of all three sulphur substituents. This type of behaviour has been previously ${ }^{22}$ observed for benzene
tuents, in comparison to hydrogen, caused the $d$-orbitals to contract in size and drop in energy so as to be more available for bonding.

Relative d-Orbital Acceptor Abilities.-In Table 3 we list the previous published i.r. intensity data and derived $\sigma$ values for para-donor-substituted chlorobenzenes, ${ }^{22}$

Table 3
Resonance interactions in para-disubstituted benzenes containing one resonance-donating substituent and one $d$-orbital Acceptor ( $A$ in $1 \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}$ )

| Cl |  | $\sigma^{\circ}{ }_{R}(2)$ | $A-170{ }^{\text {a }}$ | $\left(\frac{A-170}{15,000}\right)^{\frac{1}{2}}\left[\sigma_{\mathrm{R}}(1)-\sigma_{R}(2)\right]$ | $\lambda^{*}$ | $f_{p}{ }^{\text {d }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{NMe}_{2}$ | $0 \cdot 54$ | 2780 | 0.43 0.32 | $0 \cdot 12$ | $0 \cdot 44$ |
|  | NHMc | 0.52 | 2760 | 0.43 0.30 | $0 \cdot 12$ | $0 \cdot 42$ |
|  | $\mathrm{ND}_{2}$ | 0.47 | 1850 | 0.350 .25 | $0 \cdot 10$ | $0 \cdot 35$ |
|  | OMe | 0.43 | 1454 | $0.31 \quad 0.21$ | $0 \cdot 09$ | $0 \cdot 30$ |
| Br | F | $0 \cdot 34$ | 440 | $0 \cdot 17 \quad 0.12$ | 0.07 | $0 \cdot 19$ |
|  | Me | $0 \cdot 10$ | 110 | $0.09 \quad-0.12$ | $0 \cdot 02$ | $0 \cdot 10$ |
|  | $\mathrm{NMe}_{2}$ | $0 \cdot 54$ | 3350 | $0.47 \quad 0.31$ | $0 \cdot 17$ | 0.48 |
|  | NHMe | 0.52 | 2970 | 0.44 0.29 | $0 \cdot 17$ | $0 \cdot 46$ |
|  | $\mathrm{ND}_{2}$ | 0.47 | 2450 | 0.40 0.24 | $0 \cdot 15$ | $0 \cdot 39$ |
|  | OMe | 0.43 | 1694 | $0.34 \quad 0.20$ | $0 \cdot 14$ | $0 \cdot 34$ |
| I | F | $0 \cdot 34$ | 630 | $0 \cdot 20 \quad 0.11$ | $0 \cdot 11$ | $0 \cdot 22$ |
|  | Me | $0 \cdot 10$ | 70 | $0.07-0.13$ | $0 \cdot 03$ | 0.10 |
|  | $\mathrm{NMe}_{2}$ | $0 \cdot 54$ | 4610 | $0.55 \quad 0.32$ | $0 \cdot 23$ | 0.55 |
|  | $\mathrm{ND}_{2}{ }^{\text {a }}$ | $0 \cdot 47$ | 3050 | 0.450 .25 | $0 \cdot 20$ | $0 \cdot 45$ |
|  | OMc | 0.43 | 2294 | $0.39 \quad 0.21$ | $0 \cdot 18$ | $0 \cdot 39$ |
| $\mathrm{SiMe}_{3}$ | F | $0 \cdot 34$ | 690 | $0.21 \quad 0.12$ | $0 \cdot 15$ | $0 \cdot 27$ |
|  | Me | $0 \cdot 10$ | 0 | $0.00-0.12$ | $0 \cdot 03$ | $0 \cdot 09$ |
|  | $\mathrm{NMe}_{2}$ | $0 \cdot 54$ | $9930{ }^{\text {b }}$ | $0.81 \quad 0.56$ | $0 \cdot 23$ | $0 \cdot 79$ |
|  | OMe | $0 \cdot 43$ | $5830{ }^{\text {b }}$ | $0.62 \quad 0.45$ | $0 \cdot 18$ | $0 \cdot 63$ |
|  | 1 | $0 \cdot 34$ | $3190{ }^{\text {b }}$ | $0.46 \quad 0.36$ | $0 \cdot 15$ | 0.51 |
|  | Cl | $0 \cdot 23$ | $1270{ }^{\text {b }}$ | $0.29 \quad 0.25$ | $0 \cdot 10$ | 0.35 |
|  | Me | $0 \cdot 10$ | $550{ }^{\text {b }}$ | $0 \cdot 19$ 0.12 | $0 \cdot 03$ | $0 \cdot 15$ |

derivatives with strong donors para to substituents with available $d$-orbitals, and the correction term $\lambda \dagger$ has been introduced and analysed in terms of equation (3); $K_{\mathrm{X}}$ is

$$
\begin{equation*}
\lambda=K_{\mathbf{X}} \sigma^{\circ}{ }_{\mathbf{R}} D \tag{3}
\end{equation*}
$$

an empirical measure of the electron-accepting power of the $d$-orbital substituent determined by plotting $\Delta$,* obtained from $\left\{[(A-170) / 15,000]^{\frac{1}{2}}-\left[\sigma^{\circ}{ }_{\mathrm{R}}(1)-\sigma^{\circ}{ }_{\mathrm{R}}(2)\right]\right\}$, against $\sigma^{\circ} D$ where $D$ refers to an opposing electron donating substituent. Application of this treatment to the data in Table 2 gave $K_{\mathrm{X}}$ values of $0.34 \pm 0.03$, $0.51 \pm 0.02$, and $0.40 \pm 0.03$ for $\mathrm{SH}, \mathrm{SMe}$, and $\mathrm{SBu}^{\mathrm{t}}$, respectively.
The $K_{X}$ values for the $\operatorname{SR}$ groups ( $\mathrm{R}=\mathrm{Me}$ or $\mathrm{Bu}^{t}$ ) differ much less than their $\sigma_{R}{ }_{R}$ values ( -0.25 and -0.07 respectively). The ability of the sulphur atom to accept electrons into its vacant $d$-orbitals under the influence of para-donor substituents is thus much less affected by rotation of the alkyl sulphur group out of the plane of the benzene ring than the overlap of the sulphur lone-pair orbitals with the $\pi$-systems.

The $K_{\mathrm{X}}$ value for the SH group ( $0 \cdot 34$ ) is smaller than that of the methylthio-substituent $(0.51)$. This is in agreement with the theory of Craig, ${ }^{26}$ who considered the effects of substituents on sulphur on the availability of $d$-orbitals for bonding. He found that alkyl substi-

[^2]bromobenzenes, ${ }^{22}$ iodobenzenes, ${ }^{22}$ and trimethylphenylsilanes. ${ }^{26}$ Use of equations (1) and (3) allows the


Figure 3 Plot of $[(A-170) / 15,000]$ against $\left[\sigma_{R}^{\circ}(1)-\sigma_{R}^{\circ}(2)\right.$ $+\lambda]$ for para-substituted benzenethiols, alkyl phenyl sulphides, and trimethylsilyl-, chloro-, bromo-, and iodo-benzenes
calculation of $K_{\mathrm{X}}$ values, and thus of the overall $d$ orbital acceptor abilities as follows:

| Group: | SMe | $\mathrm{SiMe}_{3}$ | I | SBut | SH | Br | Cl |
| :--- | ---: | ---: | :---: | ---: | :---: | ---: | :---: |
| $K_{\mathbf{x}}$ | 0.51 | 0.43 | 0.43 | 0.40 | 0.34 | 0.32 | 0.22 |
| Range | $\pm 0.02$ | $\pm 0.04$ | $\pm 0.02$ | $\pm 0.04$ | $\pm 0.04$ | $\pm 0.02$ | $\pm 0.01$ |

${ }^{26}$ N. C. Cutress, A. R. Katritzky, C. Eaborn, D. R. M. Walton, and R. D. Topsom, J. Organometallic Chem., 1972, 43, 131.

Figure 3 shows the good relation obtained by plotting $[(A-170) / 15,000]^{\frac{1}{2}}$ against ( $\left.\sigma^{\circ}{ }_{\mathrm{R}} D-\sigma_{{ }_{\mathrm{R}}}^{\circ} X+K_{\mathbf{X}} \sigma^{\circ}{ }_{\mathrm{R}} D\right)$ for the compounds in Tables 2 and 3. The values for $\mathrm{SiMe}_{3}, \mathrm{I}, \mathrm{Br}$, and Cl are all lower than previously reported ( $0.62,{ }^{26} 0.55,,^{22} 0.42$, , $^{22}$ and $0.32{ }^{22}$ ) as a result of the more definite value of the constant in equation (1). The
numerical values provide an albeit approximate quantitative measure of $d$-orbital acceptance by the substituents.

We thank the S.R.C. for a Research Studentship (to N. C. C.).
[3/1197 Received, 8th June, 1973]


[^0]:    ${ }^{1}$ Part XXVII, G. Butt, M. Davis, Y. T. Pang, R. D. Topsom, and A. R. Katritzky, preceding paper.
    ${ }^{2}$ E. A. Fehnel and M. Carmack, J. Amer. Chem. Soc., 1949, 71, 2889.
    ${ }_{3}$ J. Degani, A. Mangini, A. Trombetti, and C. Zauli, Spectrochim. Acta, 1967, 23A, 1351.
    ${ }^{4}$ E. L. Wehry, J. Amer. Chem. Soc., 1967, 89, 41.
    5 A. Mangini, Pure Appl. Chem., 1963, \%, 103.
    ${ }^{6}$ F. G. Bordwell and P. J. Boutan, J. Amer. Chem. Soc., 1956, 78, 854.
    ${ }_{7}{ }^{2}$ R. R. Beishline, J. Org. Chem., 1961, 26, 2533.
    ${ }^{8}$ G. Chuchani and A. Frohlich, J. Chem. Soc. (B), 1971, 1417.
    ${ }^{9}$ L. Goodman, A. H. Konstam, and L. H. Sommer, J. Amer. Chem. Soc., 1965, 87, 1012.

[^1]:    ${ }^{20}$ A. R. Katritzky and R. D. Topsom, Angew. Chem. Internat. $E d n ., 1970,9,87$.
    ${ }_{21}$ R. T. C. Brownlee, D. G. Cameron, R. D. Topsom, A. R. Katritzky, and A. F. Pozharsky, J.C.S. Perkin II, 1974, 247.

[^2]:    * We use the term $\lambda$ to denote the calculated correction term and $\Delta$ to denote the measured difference between $[(A-170)$ ) $15,000]^{\frac{1}{2}}$ and $\left[\sigma_{R}^{\circ}(1)-\sigma_{R}^{\circ}(2)\right]$.

